DIGIRULEZ A

0101 o110

I E R s B B - v DIE‘IFI:LILE

e

D5 D4 D3 D2
k4 i o & ki

i &))

eelol ueel @100l leeel @ovel LG ele le@ ©00Ue Lele @lel0 1eele @00l0 1lled QUee |ele@ Q0100 Leeo 01000 L0000 00000

USERMANUAL

Version 1.1 (02 August 2019)

DESCRIRNLION

The Digirule 2A is an open source hardware - programmable 8-bit binary computer built into a 20cm (8”) PCB ruler and is powered by an
8-bit Microchip PIC18F45K20 microcontroller.

Full details can be found here: bradsprojects.com/digiruled

Note: The Digirule 2A is a slightly modified version of the Digirule 2. It has improved firmware which includes better button response, two
new instructions and a new start-up animation. You can find details of the original Digirule 2 from the link above (including instruction

manual download).

Version 1.1 (02 August 2019) -2-

OVEHVIEH

The top of the Digirule 2A contains the buttons, power switch, battery, microcontroller and LED’s:

EILE;
STORE SAVEMIORD
ADDRESSIIEDS oA
GOTO BULLON AN
DRIAIMEDS ADDRESS ONEIOF F BEALTERY

BUNLNLON oHINCH HOLDER

0100 o101 o1e om

T s w HEGNYEAE 1 »

. | A y
1 1
- L7

> - e = - — = =

oolol Lol oLo0L 100l 00001 e ol10 10110 gol10 11010 01010 1001t 00010 11100 QLL00 10100 Q2100 11000 01000 10000 00000

DANAIBULGHONS MICHOCONTNTROL'LFER RUNEISTOP

PREVIOUSEINEXT CPUIBUNLLOHN
ADPDRBESSIBULGTLONS

Version 1.1 (02 August 2019) -3-

The Rear of the Digirule 2A contains a summary of the instruction set, logo’s, ICSP (programming port) header and some basic help
details:

ICSP

Instruction Scl

00000000 HALT D0001101 ANDRA 00011010 BCRSC (3 Bytes) » AQ 1o A7 - Shows the currently accessed memory address.
» DO ta D7 - Shows the data stored within the: selected memory address and also shows

DOOOLOLEE 2l OODDAAL0 ORLA 00011011 BCRSS (3 Bytes) he status of the: data input buttons when any of these eight buttons is pressed.
00000010 SPEED 00001111 ORRA 00011100 Jump (2 Bytes) » Goto - Jumps to the memory addrcas which is displaycd onthe DO 10 D7 LED's.
00000011 COPYLR 00010000 XORLA 00011101 CALL (2 Bytes) » Stare - Stares the: data displayed on the: DO to D7 LED s inte the current memory address

and then increments to the next memory address.

00000100 COPYLA 00010001 XORRA 00011110 RETURN (1 Byte) www.bradsprojects.com » Prev - Jumps to the previaus memory address:

00000101 COPYAR 00010010 DECR 00011111 RETLA (2 Bytes) » Next - Jumps to the next memory address.

00000110 COPYRA 00010011 INCR 00100000 ADDRPC (2 Bytes) » OH | On - Turns the Digirule 2A off and on:
| » Run /' Stop - When in Run: made. the: Digirule 2A will execute the code starting from the

00000111 COPYRR 00010100 DECRJZ 00100001 INITSP (1 Byte) currenl memory addreas. when in Stop made. you are ablc o pragram the Digirule 2A.

00001000 ADDLA D0010101 INCRJZ 00100010 RANDA (1 Byte) » Load - Press and hold the Load buttun then press any of the cight data input buttons to
load a previausly saved pragram.

00001001 ADDRA 0001011 O SHI FTRL » Save - Press and hold the Save button then press any of the eight data input buttons to

00001010 SUBLA 00010111 SHI FTRR save the current pragram ta permanent memary.

00001011 SUBRA 00011000 CBR open source » CR2032 - This is the battery which pawers the: Digirule 2A.
00 901 100FANDIA POO11001 SBR Ra rdwa re See www.bradsprojects.comidigirule2 for more details

icspp B g B e

INSTRUCTHION
INSTRUCHION[SET, GENERRAIAHE LIP

Version 1.1 (02 August 2019) -4 -

DIGIRUUYEFZAIDIEEERENCES

The Digirule 2A contains the following differences compared to the Digirule 2:

The ‘Save’ button in the ‘program’ window has been renamed to ‘Store’

The Run/Stop button and LED’s have been moved slightly to make it clearer as to when a program is running or not
The rear of the Digirule 2A has been updated to include two new instructions (instructions 33 and 34)

The firmware has been completely revamped by Brent Hauser and is written in C (whereas the old firmware was written in basic).
The firmware update brings about the following changes:

@)
@)

O O

O O O O O O O

The SPEED instruction (instruction number 2) has been improved
Two new instructions have been added:
= Instruction number 33 (INITSP) initialises the stack pointer
= Instruction number 34 (RANDA) generates a pseudo-random number between 1 and 255
The CPU will halt if it fetches an instruction with an unknown opcode
The button are more responsive regardless of what speed the CPU is running at
Holding the Load button and then pressing the Run/Stop button will reset the CPU. This can also be used to clear the internal
stack pointer
Holding the Load button and then pressing the Prev button clears all RAM and resets the CPU.
When entering data, holding the Data 7 button for one second will set all bits.
When entering data, holding the Data O button for one second will clear all bits.
The power-on animation has been updated
Unused Microcontroller I/0 pins are programmed as outputs, so they don’t float
A progress bar is displayed on the address LED’s during a Load or Save operation
The CPU call/return stack is now four levels deep. The internal stack pointer is automatically initialized whenever a program
is loaded. Also, new instruction INITSP (opcode 33) may be used to explicitly initialize the stack pointer, such as at the
beginning of a program. This will ensure the stack will not overflow if the program is restarted.

Version 1.1 (02 August 2019) -5-

OPEHANLION

Run/Stop Modes

The Digirule 2A has two modes of operation, ‘run’ mode and ‘stop’ mmode. When in stop mode, the device is able to be programmed.
Programs can be stored to permanent memory and restored from permanent memory. When in run mode, the CPU is running through the
program which is stored within the 256 bytes of memory. The ‘run/stop’ button toggles between run mode and stop mode.

Programming the Digirule 2A

Ensuring the Digirule 2A is in stop mode, a program may be entered by using the 8 data input buttons - the status of each of the 8 bits is
shown using the corresponding data LED. If a data LED is off, pressing the corresponding data button will turn it on and vice-versa. The
address LED’s show the memory address which is currently accessed. To store your 8 bits of data into the current address and advance to
the next address in sequence - simply press the ‘save’ button within the ‘program’ window.

You can check the contents of each address by using the ‘prev’ and ‘next’ buttons, the address will show on the address LED’s while the
data stored within that address will show on the data LED’s. To jump to a specific address, simply enter the address on the data input
buttons, then press the ‘Soto’ button.

Storing a Program in Permanent Memory

You can store up to eight individual 256-byte programs in permanent memory. This will hold your programs even if the battery is
removed. To do this, press and hold the ‘save’ button within the ‘File’ window, the data LED’s will animate left and right - then press any of
the eight data input buttons to store your program within that particular memory slot. You may now release the buttons.

Loading a Program from Permanent Memory

To load one of the eight, 256-byte blocks of memory, simply press and hold the ‘load’ button within the ‘File’ window. The data LED’s will
animate back and forth - then press any of the eight data input buttons to load the program within that particular memory slot. You may
now release the buttons.

Running a Program

To run a program, simply access the address of the start of the program (which would normally be 00000000) and then press the
‘run/stop’ button. You can start a program from any address however and can even have multiple programs within a 256-byte block. For
example, you could have one program which uses addresses 00000000 to 00011111 and then have another program which uses
addresses 00100000to 11111111. To run the first program, simply access address 00000000 then press the ‘run/stop’ button. To access
the second program, simply access address 00100000 then press the ‘run/stop’ button.

Version 1.1 (02 August 2019) -6-

Stopping a Program
Simply press the ‘run/stop’ button while a program is running, to stop that program.

Turning Off the Address LED’s While the CPU is Running
When the CPU is in run mode, you can toggle the address LED’s on and off by pressing the ‘goto’ button.

Preconfigured Registers
The Digirule 2A has four registers (addresses) which are set aside for specific uses. These are the last four addresses within the 256-byte
memory space and are as follows:

e Address 252 (binary 11111100) = Status register. This register can be read from or written to. The discrete bits within this register
are as follows:

o Bit O =zero flag (logic O means the previous instruction resulted in a non-zero answer while a logic 1 means the previous
instruction resulted in a zero answer).

o Bit 1 =carry flag (logic O means the previous instruction gave a carry of O while a logic 1 means the previous instruction gave a
carry of 1).

o Bit 8 =address LED function flag (logic O means the address LED’s function as normal - showing the currently accessed address
while a logic 1 means the address LED’s will show the data loaded into the addressLEDRegister).

e Address 253 (binary 11111101) = Button Register. This register can be read from in order to obtain the status of each of the eight
data buttons. This is useful to allow user input while a program is running.

e Address 254 (binary 11111110) = Address LED Register. This register can be read from or written to. This register is written to in
order to show data on the 8 address LED’s. NOTE - in order for this to function, you must first set bit 2 to a logic ‘1’ within the status
register otherwise the address LED’s will show the currently accessed memory address.

e Address 255 (binary 11111111) = Data LED Register. This register can be read from or written to. This register is written to in
order to show data on the 8 data LED’s.

Version 1.1 (02 August 2019) -7 -

INSERTINGEHE{BAGTIERY

It is important that care be taken when installing the CRR032 battery. Ensure the battery has the positive label facing up (away from the
Digirule 2A) and the battery is slotted under the metal tab FIRST and then pressed down to be held by the plastic tabs. Failing to follow
this procedure may result in damage to the metal tab.

/\IMPORTANT!

Place battery
under metal

FEANURES|ANCISPECIFICANIONS

e 35 instructions

e Each program can be up to 256 bytes long
e 8 Permanent memory locations to back up your programs
e 8-bit data bus

e 8-bit address bus

e 8dataLED’s

e 8 address LED’s

e 8 data input buttons

e Address previous and next buttons

e Address go to button

e Data store (and go to next address) button
e CPU run/ stop button

e ‘File’ load / save buttons

e Powered by a 3V CRR032 coin cell battery

Version 1.1 (02 August 2019) -8-

BUINCINIPROGRAMS

Asgs standard, each Digirule 2A comes with 8 basic built-in programs. To access a program, simply hold down the ‘LOAD’ button, then press
any one of the Data Input buttons to load the program from that location. Once loaded, ensure the address LED’s show all zeros
(00000000) then press the ‘run’ button to execute that program.

List of the eight built-in example programs:
DO - Kill the Bit game. (A single LED will shift from right to left, the player needs to press any of the 8 data input buttons in an
attempt to turn the corresponding LED off. Pressing a button when the LED is on - will turn it off however pressing a button when
the LED is off, will turn it on. The aim of the game is to have all LED’s off.
D1 - Smiley face persistence of vision display. (once run, press the ‘GOTO’ button to turn off the address LED’s, then wave the ruler
back and forth quite fast in a dark room to see some smiley faces drawn in the air)
D2 - 8-bit counter (uses the data LED’s to count from O to 65 (00000000 to 11111111)
D3 - 16-bit counter (uses the Data LED’s for the lower 8-bits and the Address LED’s as the upper 8-bits)
D4 - Knightrider KIT car scanner (The Data LED’s move back and forth like the KIT car in Knightrider)
DS - Button test (once run, press a button to have the corresponding Data LED light up)
D6 - Target practice (this is a game whereby you have to press a data button that corresponds with the currently lit data LED to
score a point. Your score is presented on the address LED’s. If you ‘shoot’ and miss, you lose all of your points.)
DY - Police flasher (this just flashes groups of 4 LED’s back and forth on the Address and Data LED’s)

Version 1.1 (02 August 2019) -9-

INSTRUCTIONISEMSLUMMARY,

Description

Bytes

Flags

Number | Instruction

0 HALT Stop executing instructions (performs the same task as pressing the CPU RUN/STOP button) 1 None
1 NOP No operation 1 None
2 SPEED Set the speed that the CPU steps through each instruction once the CPU is running 2 None
3 COPYLR Copy a literal value to the specified RAM location 3 None
4 COPYLA Copy a literal value to the Accumulator 2 None
5 COPYAR Copy the contents of the Accumulator to the specified RAM location 2 None
6 COPYRA Copy the contents of the specified RAM location to the Accumulator 2 Zero
7 COPYRR Copy the contents of one RAM location to another RAM location 3 Zero
8 ADDLA Add a literal value to the Accumulator (result stored in Accumulator) 2 Carry, Zero
9 ADDRA Add the contents of a RAM location to the Accumulator (result stored in Accumulator) 2 Carry, Zero
10 SUBLA Subtract a literal value from the Accumulator (result stored in the Accumulator) 2 Carry, Zero
Subtract the contents of the specified RAM location from the Accumulator (result stored in
11 SUBRA Accumulator) 2 Carry, Zero
12 ANDLA AND a literal value with the Accumulator (result stored in Accumulator) 2 Zero
13 ANDRA AND the contents of the specified RAM location with the Accumulator (result stored in Accumulator) 2 Zero
14 ORLA OR a literal value with the Accumulator (result stored in Accumulator) 2 Zero
15 ORRA OR the contents of the specified RAM location with the Accumulator (result stored in Accumulator) 2 Zero
16 XORLA XOR a literal value with the Accumulator (result stored in Accumulator) 2 Zero
17 XORRA XOR the contents of the specified RAM location with the Accumulator (result stored in Accumulator) 2 Zero
18 DECR Decrement the contents of the specified RAM location by one 2 Zero
19 INCR Increment the contents of the specified RAM location by one 2 Zero
Decrement the contents of the specified RAM location by one, if the result IS zero, skip the next two lines
20 DECRJZ of code 2 Zero
Increment the contents of the specified RAM location by one, if the result IS zero, skip the next two lines
21 INCRJZ of code 2 Zero
22 SHIFTRL Shift the contents of the specified RAM location left (through the carry flag) by one 2 Carry
23 SHIFTRR Shift the contents of the specified RAM location right (through the carry flag) by one 2 Carry
24 CBR Clear the specified bit within the specified RAM location 3 None
25 SBR Set the specified bit within the specified RAM location 3 None
26 BCRSC Check the specified bit within the specified RAM location, if it IS a, ZERO, skip the next two lines of code 3 None
7 BCRSS Check the specified bit within the specified RAM location, if it IS a, ONE, skip the next two lines of code 3 None
28 JUMP Jump to a specific RAM location and continue running instructions from there 2 None
Jump to a specific RAM location, continue running instructions from there, then return once a,' RETURN'
29 CALL or 'RETLA' instruction is executed 2 None
Return to the very next RAM location after the 'CALL' instruction with a literal value stored in the
30 RETLA Accumulator 2 None
31 RETURN Return to the very next RAM location after the 'CALL' instruction 1 None

Version 1.1 (02 August 2019)

-10 -

32 ADDRPC Add the contents of a RAM location to the Program Counter None

33 INITSP Initialise the Stack Pointer None
Generates a random number between 1 and 255 (00000001 and 11111111) and stores it in the

34 RANDA accumulator None

Version 1.1 (02 August 2019)

-11 -

INSTRUCTION]S Efl,

0. HALT

Description: Stop executing instructions
Usage: [HALT]

Program Bytes Used: 1

Status Flags Affected: None

Example:

Machine Code
PC Binary Instruction (Binary)

00000000 | HALT 00000000

Machine Code
(Decimal)

1. NOP
Description: Does not perform any operation
Usage: [NOP]
Program Bytes Used: 1
Status Flags Affected: None

Example:

Machine Code

PC Binary Instruction (Binary)
00000000 | NOP 00000001

Machine Code
(Decimal)

Version 1.1 (02 August 2019)

-12 -

2. SPEED

Description: Set the speed that the Digirule 2A steps between instructions (the higher the number - the slower the speed)

Usage: [SPEED] [Value to copy]
Program Bytes Used: 2
Status Flags Affected: None

Example 1: Set the speed to 129

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SPEED 00000010 2
00000001 129 10000001 129

Example &: Set the speed to 23

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SPEED 00000010 2
00000001 23 00010111 23

Version 1.1 (02 August 2019)

- 13-

3. COPYLR

Description: Copy a literal value to the specified RAM location
Usage: [COPYLR] [Value to copy] [RAM location to store the Value]
Program Bytes Used: 3

Status Flags Affected: None

Example 1: Copy the number 35 (binary 00100011) to RAM location 240 (binary 11110000)

Pre-conditions: RAM location 240 = O (binary 00000000)

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | COPYLR 00000011 3
00000001 35 00100011 35
00000010 240 11110000 240

Post-conditions: RAM location 240 = 35 (binary 00100011)

Example &: Copy the number 82 (binary 01010010) to ‘myVariable’ (‘myVariable’ is an alias for RAM location 241)

Pre-conditions: ‘myVariable’ =15 (binary O0001111)

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | COPYLR 00000011 3
00000001 82 01010010 82
00000010 myVariable 11110001 241

Post-conditions: ‘myVariable’ =82 (binary 01010010)

Version 1.1 (02 August 2019)

4. COPYLA

Description: Copy a literal value to the Accumulator.
Usage: [COPYLA] [Value to copy]

Program Bytes Used: 2

Status Flags Affected: None

Example 1: Copy the number 123 (binary 01111011) to the Accumulator

Pre-conditions: Accumulator = 16 (binary 00010000)

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | COPYLA 00000100 4
00000001 123 01111011 123

Post-conditions: Accumulator =123 (binary 01111011)

Version 1.1 (02 August 2019)

-15 -

5. COPYAR

Description: Copy the contents of the Accumulator to the specified RAM location
Usage: [COPYAR] [RAM location to store the number]

Program Bytes Used: 2

Status Flags Affected: None

Example 1: Copy the contents of the Accumulator to RAM location 250 (binary 11111010).

Pre-conditions: Accumulator =2 (binary 00000010)
RAM location 250 (binary 11111010) = 7 (binary 00000111)

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | COPYAR 00000101 5
00000001 250 11111010 250

Post-conditions: Accumulator =2 (binary 00000010)
RAM location 250 (binary 11111010) =2 (binary 00000010)
Example &: Copy the contents of the Accumulator to ‘myVariable’ (‘myVariable’ is an alias for RAM location 252)

Pre-conditions: Accumulator =129 (binary 10000001)
‘myVariable’ = 20 (binary 00010100)

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | COPYAR 00000101 5
00000001 myVariable 11111100 252

Post-conditions: Accumulator = 129 (binary 10000001)
‘myVariable’ = 129 (binary 10000001)

Version 1.1 (02 August 2019)

- 16 -

6. COPYRA

Description: Copy the contents of the specified RAM location to the Accumulator
Usage: [COPYRA] [RAM location to copy the value from]

Program Bytes Used: 2

Status Flags Affected: Zero Flag

Example 1: Copy the contents of RAM location 243 (binary 11110011) to the Accumulator

Pre-conditions: Accumulator = 16 (binary 00010000)
RAM location 243 (binary 11110011) = 127 (binary 01111111)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | COPYRA 00000110 6
00000001 243 11110011 243

Post-conditions: Accumulator =127 (binary 01111111)
RAM location 243 (binary 11110011) = 127 (binary 01111111)
Zero Flag=0

Example : Copy the contents of ‘myVariable’ to the accumulator

Pre-conditions: Accumulator = 56 (binary 00111000)
‘myVariable’ = 32 (binary 00100000)

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | COPYRA 00000110 6
00000001 myVariable 11111100 252

Post-conditions: Accumulator = 32 (binary 00100000)
‘myVariable’ = 32 (binary 00100000)

Version 1.1 (02 August 2019)

7. COPYRR

Description: Copy the contents of one RAM location to another

Usage: [COPYRR] [RAM location to copy the value from] [RAM location to copy the value to]
Program Bytes Used: 3
Status Flags Affected: Zero Flag

Example 1: Copy the contents of RAM location 252 (binary 11111100) to RAM location 53 (binary 11111101)

Pre-conditions: RAM location 252 (binary 11111100) = 10 (binary 00001010)
RAM location 253 (binary 11111101) =0 (binary 00000000)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | COPYRR 00000111 7
00000001 252 11111100 252
00000010 253 11111101 253

Post-conditions: RAM location 252 (binary 11111100) = 10 (binary 00001010)

RAM location 853 (binary 11111101) = 10 (binary 00001010)
Zero Flag=0

Example &: Copy the contents of ‘myVariable’ to ‘myOtherVariable’ (‘myVariable’ is an alias for RAM location 244 while
‘myOtherVariable’ is an alias for RAM location 245)

Pre-conditions: ‘myVariable’ =0 (binary 00000000)
‘myOtherVariable’ = 25 (binary 00011001)

Zero Flag=0
Machine Code | Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | COPYRR 00000111 7
00000001 | myVariable 11110100 244
00000010 myOtherVariable 11110101 245

Version 1.1 (02 August 2019)

- 18 -

Post-conditions:

Version 1.1 (02 August 2019)

‘myVariable’ = O (binary 00000000)
‘myOtherVariable’ = O (binary 00000000)
ZeroFlag=1

-19 -

8. ADDLA

Description: Add a literal value to the Accumulator
Usage: [ADDLA] [Value to add]

Program Bytes Used: 2

Status Flags Affected: Zero Flag, Carry Flag

Example 1: Add the literal value 15 (binary 00001111) to the Accumulator
Pre-conditions: Accumulator = 0 (binary 00000000)

Zero Flag=1
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | ADDLA 00001000 8
00000001 15 00001111 15

Post-conditions: Accumulator = 15 (binary 00001111)
Zero Flag=0
Carry Flag=0

Example &: Add the literal value 1 (binary 00000001) to the Accumulator

Pre-conditions: Accumulator =255 (binary 11111111)
Zero Flag=0
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | ADDLA 00001000 8
00000001 1 00000001 1

Post-conditions: Accumulator = 0 (binary 00000000)
Zero Flag=1
Carry Flag=1
Version 1.1 (02 August 2019)

9. ADDRA

Description: Add the value contained within a RAM location to the Accumulator
Usage: [ADDRA] [RAM location of value to add to the Accumulator]

Program Bytes Used: 2

Status Flags Affected: Zero Flag, Carry Flag

Example 1: Add the value stored within RAM location 250 (binary 11111010) to the Accumulator

Pre-conditions: Accumulator = 100 (binary 01100100)
RAM location 250 (binary 11111010) = 100 (binary 01100100)
Zero Flag=0
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | ADDRA 00001001 9
00000001 250 11111010 250

Post-conditions: Accumulator =200 (binary 11001000)
RAM location 250 (binary 11111010) = 100 (binary 01100100)
Zero Flag=0
Carry Flag=0

Example : Add the value stored within ‘myVariable’ to the Accumulator (‘myVariable’ is an alias for RAM location 249)

Pre-conditions: Accumulator =40 (binary 00101000)
‘myVariable’ = 72 (binary 01001000)
Zero Flag=0
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | ADDRA 00001001 9
00000001 | myVariable 11111001 249

Version 1.1 (02 August 2019)

Post-conditions:

Version 1.1 (02 August 2019)

Accumulator =112 (binary 01110000)
‘myVariable’ = 72 (binary 01001000)
Zero Flag=0

Carry Flag=0

-2

10. SUBLA

Description: Subtract a literal value from the Accumulator
Usage: [SUBLA] [Value to subtract]

Program Bytes Used: 2

Status Flags Affected: Zero Flag, Carry Flag

Example 1: Subtract the literal value 20 (binary 00010100) from the Accumulator
Pre-conditions: Accumulator =20 (binary 00010100)

Zero Flag=0
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SUBLA 00001010 10
00000001 20 00010100 20

Post-conditions: Accumulator = 0 (binary 00000000)
Zero Flag=1
Carry Flag=0

Example &: Subtract the literal value 41 (binary 00101001) from the Accumulator

Pre-conditions: Accumulator =40 (binary 00101000)
Zero Flag=0
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SUBLA 00001010 10
00000001 41 00101001 41

Post-conditions: Accumulator =255 (binary 11111111)
Zero Flag=0
Carry Flag=1
Version 1.1 (02 August 2019)

11. SUBRA

Description: Subtract the value stored in a RAM location, from the Accumulator
Usage: [SUBRA] [RAM location of value to subtract from the Accumulator]
Program Bytes Used: 2

Status Flags Affected: Zero Flag, Carry Flag

Example 1: Subtract the value stored within RAM location 250 (binary 11111010) from the Accumulator

Pre-conditions: Accumulator =201 (binary 11001001)
RAM location 250 (binary 11111010) = 34 (binary 00100010)
Zero Flag=0
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SUBRA 00001011 11
00000001 250 11111010 250

Post-conditions: Accumulator =167 (binary 10100111)
RAM location 250 (binary 11111010) = 34 (binary 00100010)
Zero Flag=0
Carry Flag=0

Example 2: Subtract the value stored within ‘myVariable’ from the Accumulator (‘myVariable’ is an alias for RAM location
245)

Pre-conditions: Accumulator =255 (binary 11111111)
‘myVariable’ = 255 (binary 11111111)
Zero Flag=0
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SUBRA 00001011 11
00000001 | myVariable 11110101 245

Version 1.1 (02 August 2019) -24 -

Post-conditions:

Version 1.1 (02 August 2019)

Accumulator = 0 (binary 00000000)
‘myVariable’ = 255 (binary 11111111)
Zero Flag=1

Carry Flag=0

_25.-

12. ANDLA

Description: AND a literal value with the contents of the Accumulator
Usage: [ANDLA] [Value to AND with the Accumulator]

Program Bytes Used: 2

Status Flags Affected: Zero Flag

Example 1: AND the literal value 58 (binary 00111010) with the Accumulator

Pre-conditions: Accumulator =170 (binary 10101010)
Zero Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | ANDLA 00001100 12
00000001 255 11111111 255

Post-conditions: Accumulator =42 (binary 00101010)
Zero Flag=0

Example &: AND the literal value 99 (binary 01100011) with the Accumulator

Pre-conditions: Accumulator =156 (binary 10011100)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | ANDLA 00001100 12
00000001 99 01100011 99

Post-conditions: Accumulator = 0 (binary 00000000)
ZeroFlag=1

Version 1.1 (02 August 2019)

-26 -

13. ANDRA

Description: AND the contents of the specified RAM location with the Accumulator
Usage: [ANDRA] [RAM location of value to AND with Accumulator]

Program Bytes Used: 2

Status Flags Affected: Zero Flag

Example 1: AND the contents of RAM location 240 (binary 11110000) with the Accumulator
Pre-conditions: Accumulator =48 (binary 00110000)

RAM location 240 (binary 11110000) = 16 (binary 00010000)
Zero Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | ANDRA 00001101 13
00000001 240 11110000 240

Post-conditions: Accumulator = 16 (binary 00010000)
RAM location 240 (binary 11110000) = 16 (binary 00010000)
Zero Flag=0

Example &: AND the contents of RAM location 242 (binary 11110010) with the Accumulator

Pre-conditions: Accumulator =7 (binary 00000111)
RAM location 242 (binary 11110010) = 129 (binary 10000001)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | ANDRA 00001101 13
00000001 242 11110010 242

Post-conditions: Accumulator =1 (binary 0000001)
RAM location 242 (binary 11110010) = 129 (binary 10000001)
Zero Flag=0

Version 1.1 (02 August 2019)

_27 -

14. ORLA
Description: OR a literal value with the contents of the Accumulator
Usage: [ORLA] [Value to OR with the Accumulator]
Program Bytes Used: 2
Status Flags Affected: Zero Flag
Example 1: OR the literal value 240 (binary 11110000) with the Accumulator

Pre-conditions: Accumulator =15 (binary 00001111)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 ORLA 00001110 14
00000001 240 11110000 240

Post-conditions: Accumulator =255 (binary 11111111)
Zero Flag=0

Example 2: OR the literal value 3 (binary OO000011) with the Accumulator

Pre-conditions: Accumulator =4 (binary 00000100)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 ORLA 00001110 14
00000001 3 00000011 3

Post-conditions: Accumulator =7 (binary 00000111)
Zero Flag=0

Version 1.1 (02 August 2019)

15. ORRA

Description: OR the contents of the specified RAM location with the Accumulator
Usage: [ORRA] [RAM location of value to OR with Accumulator]

Program Bytes Used: 2

Status Flags Affected: Zero Flag

Example 1: OR the contents of RAM location 241 (binary 11110001) with the Accumulator
Pre-conditions: Accumulator =12 (binary 00001100)

RAM location 241 (binary 11110001) = 129 (binary 10000001)
Zero Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | ORRA 00001111 15
00000001 241 11110001 241

Post-conditions: Accumulator =141 (binary 10001101)
RAM location 241 (binary 11110001) = 129 (binary 10000001)
Zero Flag=0

Example 2: OR the contents of RAM location 249 (binary 11111001) with the Accumulator

Pre-conditions: Accumulator =1 (binary 00000001)
RAM location 249 (binary 11111001) =9 (binary 00001001)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | ORRA 00001111 15
00000001 249 11111001 249

Post-conditions: Accumulator =9 (binary 00001001)
RAM location 249 (binary 11111001) =9 (binary 00001001)
Zero Flag=0

Version 1.1 (02 August 2019)

-29.

16. XORLA
Description: XOR a literal value with the contents of the Accumulator
Usage: [XORLA] [Value to XOR with the Accumulator]
Program Bytes Used: 2
Status Flags Affected: Zero Flag
Example 1: XOR the literal value 255 (binary 11111111) with the Accumulator

Pre-conditions: Accumulator =170 (binary 10101010)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 XORLA 00010000 16
00000001 255 11111111 255

Post-conditions: Accumulator =85 (binary 01010101)
Zero Flag=0

Example : XOR the literal value 32 (binary 00100000) with the Accumulator

Pre-conditions: Accumulator = 32 (binary 00100000)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | XORLA 00010000 16
00000001 32 00100000 32

Post-conditions: Accumulator = 0 (binary 00000000)
Zero Flag=1

Version 1.1 (02 August 2019)

17. XORRA

Description: XOR the contents of the specified RAM location with the Accumulator
Usage: [XORRA] [RAM location of value to XOR with Accumulator]

Program Bytes Used: 2

Status Flags Affected: Zero Flag

Example 1: XOR the contents of RAM location 245 (binary 11110101) with the Accumulator
Pre-conditions: Accumulator =15 (binary 00001111)

RAM location 245 (binary 11110101) =9 (binary 00001001)
Zero Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | XORRA 00010001 17
00000001 245 11110101 245

Post-conditions: Accumulator =6 (binary 00000110)
RAM location 245 (binary 11110101) =9 (binary 00001001)
Zero Flag=0

Example : XOR the contents of RAM location 250 (binary 11111010) with the Accumulator

Pre-conditions: Accumulator =21 (binary 00010101)
RAM location 250 (binary 11111010) =255 (binary 11111111)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | XORRA 00010001 17
00000001 250 11111010 250

Post-conditions: Accumulator =234 (binary 11101010)
RAM location 250 (binary 11111010) =255 (binary 11111111)
Zero Flag=0

Version 1.1 (02 August 2019)

-31 -

18. DECR
Description: Decrement the value stored within a specified RAM location by one.
Usage: [DECR] [RAM location of value with which to decrement]
Program Bytes Used: 2
Status Flags Affected: Zero Flag
Example 1: Decrement the value stored within RAM location 248 (binary 11111000) by one

Pre-conditions: RAM location 248 (binary 11111000) =43 (binary 00101011)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | DECR 00010010 18
00000001 248 11111000 248

Post-conditions: RAM location 248 (binary 11111000) =42 (binary 00101010)
Zero Flag=0
Example &: Decrement the value stored within RAM location 241 (binary 11110001) by one

Pre-conditions: RAM location 241 (binary 11110001) =1 (binary 00000001)
Zero Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | DECR 00010010 18
00000001 241 11110001 241

Post-conditions: RAM location 241 (binary 11110001) = 0 (binary 00000000)
ZeroFlag=1

Version 1.1 (02 August 2019)

-32-

19. INCR
Description: Increment the value stored within a specified RAM location by one.
Usage: [INCR] [RAM location of value with which to increment]
Program Bytes Used: 2
Status Flags Affected: Zero Flag
Example 1: Increment the value stored within RAM location 248 (binary 11111000) by one

Pre-conditions: RAM location 248 (binary 11111000) =255 (binary 11111111)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 INCR 00010011 19
00000001 248 11111000 248

Post-conditions: RAM location 248 (binary 11111000) = 0 (binary 00000000)
Zero Flag=1
Example &: Increment the value stored within RAM location 241 (binary 11110001) by one

Pre-conditions: RAM location 241 (binary 11110001) =1 (binary 00000001)
Zero Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 INCR 00010011 19
00000001 241 11110001 241

Post-conditions: RAM location 241 (binary 11110001) =2 (binary 00000010)
Zero Flag=0

Version 1.1 (02 August 2019)

-33.-

20. DECRJZ

Description: Decrement the value stored within a specified RAM location by one then check the result. If the result IS zero -

skip the next two lines of code. If the answer is NOT zero - continue with the next line of code.
Usage: [DECRJZ] [RAM location of value with which to decrement]
Program Bytes Used: 2

Status Flags Affected: Zero Flag

Example 1: Decrement the value stored within RAM location 250 (binary 11111010) by one then check the result.

Pre-conditions:

RAM location 250 (binary 11111010) =5 (binary 00000101)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | DECRJZ 00010100 20
00000001 250 11111010 250
00000010 | Ju™mP 00011100 28
00000011 0 00000000 0
00000100 | HALT 00000000 0

Post-conditions: RAM location 250 (binary 11111010) =4 (binary 00000100)

Notes: Since the result of the decrement is NOT zero, the very next line of code is executed. In this case the program will
JUMP back to line O (binary 00000000) which will execute another DECRJZ instruction.

Version 1.1 (02 August 2019)

Zero Flag=0

-34 -

Example &: Decrement the value stored within RAM location 250 (binary 11111010) by one then check the result.

Pre-conditions:

RAM location 250 (binary 11111010) =1 (binary 00000001)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 | DECRJZ 00010100 20
00000001 250 11111010 250
00000010 | Ju™mP 00011100 28
00000011 0 00000000 0
00000100 | HALT 00000000 0

Post-conditions: RAM location 250 (binary 11111010) = 0 (binary 00000000)

Zero Flag=1

Notes: Since the result of the decrement IS zero, the next two lines of code are skipped, and the HALT instruction is executed.

Version 1.1 (02 August 2019)

-35-

2l. INCRJZ

Description: Increment the value stored within a specified RAM location by one then check the result. If the result IS zero -

skip the next two lines of code. If the answer is NOT zero - continue with the next line of code.
Usage: [INCRJZ] [RAM location of value with which to increment]
Program Bytes Used: 2

Status Flags Affected: Zero Flag

Example 1: Increment the value stored within RAM location 252 (binary 11111100) by one then check the result.

Pre-conditions:

RAM location 252 (binary 11111100) = 222 (binary 11011110)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 INCRJZ 00010101 21
00000001 252 11111100 252
00000010 | JUMP 00011100 28
00000011 0 00000000 0
00000100 | HALT 00000000 0

Post-conditions: RAM location 252 (binary 11111100) = 223 (binary 11011111)

Notes: Since the result of the increment is NOT zero, the very next line of code is executed. In this case the program will
JUMP back to line O (binary 00000000) which will execute another INCRJZ instruction.

Version 1.1 (02 August 2019)

Zero Flag=0

-36 -

Example &: Increment the value stored within RAM location 252 (binary 11111100) by one then check the result.

Pre-conditions:

RAM location 252 (binary 11111100) =255 (binary 11111111)

Zero Flag=0
Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)
00000000 INCRJZ 00010101 21
00000001 252 11111100 252
00000010 | Ju™mP 00011100 28
00000011 0 00000000 0
00000100 | HALT 00000000 0

Post-conditions: RAM location 252 (binary 11111100) =0 (binary 00000000)

Zero Flag=1

Notes: Since the result of the increment IS zero, the next two lines of code are skipped, and the HALT instruction is executed.

Version 1.1 (02 August 2019)

-37-

22. SHIFTRL

Description: Shift the data stored within a specified RAM location left by one through carry.
Usage: [SHIFTRL] [RAM location of data with which to shift]

Program Bytes Used: 2

Status Flags Affected: Carry Flag

Example 1: Shift the value stored within RAM location 241 (binary 11110001) left by one through carry.

Pre-conditions: RAM location 241 (binary 11110001) =85 (binary 01010101)
Carry Flag=1

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SHIFTRL 00010110 22
00000001 241 11110001 241

Post-conditions: RAM location 241 (binary 11110001) =171 (binary 10101011)
Carry Flag=0

Example &: Shift the value stored within RAM location 241 (binary 11110001) left by one through carry.

Pre-conditions: RAM location 241 (binary 11110001) =171 (binary 10101011)
Carry Flag=0

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SHIFTRL 00010110 22
00000001 241 11110001 241

Post-conditions: RAM location 241 (binary 11110001) = 86 (binary 01010110)
Carry Flag=1

Version 1.1 (02 August 2019)

23. SHIFTRR

Description: Shift the data stored within a specified RAM location right by one through carry.
Usage: [SHIFTRR] [RAM location of data with which to shift]

Program Bytes Used: 2

Status Flags Affected: Carry Flag

Example 1: Shift the value stored within RAM location 241 (binary 11110001) right by one through carry.

Pre-conditions: RAM location 241 (binary 11110001) =85 (binary 01010101)
Carry Flag=1

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SHIFTRR 00010111 23
00000001 241 11110001 241

Post-conditions: RAM location 241 (binary 11110001) = 170 (binary 10101010)
Carry Flag=1

Example &: Shift the value stored within RAM location 241 (binary 11110001) right by one through carry.

Pre-conditions: RAM location 241 (binary 11110001) =170 (binary 10101010)
Carry Flag=1

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 SHIFTRR 00010111 23
00000001 241 11110001 241

Post-conditions: RAM location 241 (binary 11110001) =213 (binary 11010101)
Carry Flag=0

Version 1.1 (02 August 2019)

24.CBR

Description: Clear a specific bit within a specified RAM location.

Usage: [CBR] [Specified bit with which to clear] [Specified RAM location of data/]
Program Bytes Used: 3

Status Flags Affected: None

Example 1: Clear bit 2 (binary O0000010) in RAM location 244 (binary 11110100).

Pre-conditions: RAM location 244 (binary 11110100) = 18 (binary O0001111)

Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)

00000000 | CBR 00011000 24
00000001 2 00000010 2
00000010 244 11110100 244

Post-conditions: RAM location 244 (binary 11110100) =11 (binary O0001011)

Example &: Clear bit 7 (binary O0000111) in RAM location 240 (binary 11110000).

Pre-conditions: RAM location 240 (binary 11110000) =255 (binary 11111111)

Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)

00000000 | CBR 00011000 24
00000001 7 00000111 7
00000010 240 11110000 240

Post-conditions: RAM location 240 (binary 11110000) = 127 (binary 01111111)

Version 1.1 (02 August 2019)

- 40 -

5. SBR

Description: Set a specific bit within a specified RAM location.

Usage: [SBR] [Specified bit with which to set] [Specified RAM location of data]
Program Bytes Used: 3

Status Flags Affected: None

Example 1: Set bit 5 (binary 00000101) in RAM location 251 (binary 11111011).

Pre-conditions: RAM location 251 (binary 11111011) =0 (binary 00000000)

Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)

00000000 SBR 00011001 25
00000001 5 00000101 5
00000010 251 11111011 251

Post-conditions: RAM location 251 (binary 11111011) = 32 (binary 00100000)

Example &: Set bit O (binary 00000000) in RAM location 243 (binary 11110011).

Pre-conditions: RAM location 243 (binary 11110011) =254 (binary 11111110)

Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)

00000000 SBR 00011001 25
00000001 0 00000000 0
00000010 243 11110011 243

Post-conditions: RAM location 243 (binary 11110011) =255 (binary 11111111)

Version 1.1 (02 August 2019)

26. BCRSC

Description: Check a specific bit within a specified RAM location. If the bit IS a ZERO - skip the next two lines of code. If the

bit is NOT a ZERO - continue with the next line of code.
Usage: [BCRSC] [bit to check] [Specified RAM location]
Program Bytes Used: 3

Status Flags Affected: None

Example 1: Check bit & (binary O0O000010) within RAM location 249 (binary 11111001).

Pre-conditions: RAM location 249 (binary 11111001) = 3 (binary 00000011)

Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)

00000000 | BCRSC 00011010 26
00000001 2 00000010 2
00000010 249 11111001 249
00000011 | JUMP 00011100 28
00000100 16 00010000 16
00000101 | HALT 00000000 0

Post-conditions: RAM location 249 (binary 11111001) = 3 (binary 00000011)

Notes: Since bit & within RAM location 249 IS a ZERO, the code will skip straight to the HALT instruction.

Example &: Check bit & (binary 00000010) within RAM location 249 (binary 11111001).

Pre-conditions:

PC Binary ‘ Instruction

Machine Code

RAM location 249 (binary 11111001) = 15 (binary 00001111)

Machine Code

(Binary) (Decimal)
00000000 | BCRSC 00011010 26
00000001 2 00000010 2
00000010 249 11111001 249
00000011 | Jum™mpP 00011100 28
00000100 16 00010000 16
00000101 | HALT 00000000 0

Post-conditions: RAM location 249 (binary 11111001) =18 (binary O0001111)
Version 1.1 (02 August 2019)

-4 -

Notes: Since bit & within RAM location 249 is NOT a ZERO, the code will continue with the JUMP instruction.

Version 1.1 (02 August 2019)

-43 -

27. BCRSS

Description: Check a specific bit within a specified RAM location. If the bit IS a ONE - skip the next two lines of code. If the bit

is NOT a ONE - continue with the next line of code.
Usage: [BCRSS] [bit to check] [Specified RAM location]
Program Bytes Used: 3

Status Flags Affected: None

Example 1: Check bit 4 (binary 00000100) within RAM location 248 (binary 11111000).

Pre-conditions: RAM location 248 (binary 11111000) =31 (binary 00011111)

Machine Code Machine Code
PC Binary Instruction (Binary) (Decimal)

00000000 | BCRSS 00011011 27
00000001 4 00000100 4
00000010 248 11111000 248
00000011 | JUMP 00011100 28
00000100 20 00010100 20
00000101 | HALT 00000000 0

Post-conditions: RAM location 248 (binary 11111000) =31 (binary 00011111)

Notes: Since bit 4 within RAM location 248 IS a ONE, the code will skip straight to the HALT instruction.

Example &: Check bit 7 (binary O0000111) within RAM location 248 (binary 11111000).

Pre-conditions:

PC Binary ‘ Instruction

Machine Code

RAM location 248 (binary 11111000) = 31 (binary 00011111)

Machine Code

(Binary) (Decimal)
00000000 | BCRSS 00011011 27
00000001 7 00000111 7
00000010 2438 11111000 248
00000011 | Jum™mpP 00011100 28
00000100 20 00010100 20
00000101 | HALT 00000000 0

Post-conditions: RAM location 248 (binary 11111000) = 31 (binary 00011111)
Version 1.1 (02 August 2019)

_44 -

Notes: Since bit 7 within RAM location 248 IS not a ONE, the code will continue with the JUMP instruction.

Version 1.1 (02 August 2019)

- 45 -

28. JUMP

Description: Go to a specific RAM location and continue executing instructions from there.
Usage: [JUMP] [Specified RAM location to jump to]

Program Bytes Used: 2

Status Flags Affected: None

Example 1: Jump to RAM location 6 (binary O0000110) and continue executing code from there.

Machine Code

Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | JuMP 00011100 28
00000001 6 00000110 6
00000010 0
00000011 0
00000100 0
00000101 0
00000110 | Jum™mp 00011100 28
00000111 0 00000000 0

Notes: This example demonstrates an infinite loop. When first run, the program will jump to line 6 (binary 00000110) which

then executes another JUMP instruction, causing the program to jump back to line O (binary 00000000).

Version 1.1 (02 August 2019)

- 46 -

29. CALL

Description: This instruction is almost identical to the JUMP instruction in that it will jump to a specific RAM location to keep
executing code. The difference here is that the call instruction will save the current RAM location so that we may later return
to the code that used the CALL instruction later. (The RETURN or RETLA instruction is used to return to our calling code).
Usage: [CALL] [Specified RAM location to jump to]

Program Bytes Used: 2

Status Flags Affected: None

Example 1: Jump to RAM location 6 (binary O0000110), continue executing code from there then return to continue
executing code as normal.

Machine Code | Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | CALL 00011101 29
00000001 6 00000110 6
00000010 | HALT 00000000 0
00000011 0
00000100 0
00000101 0
00000110 | COPYRR 00000111 7
00000111 | BUTTONREGISTER 11111101 253
00001000 DATALEDREGISTER 11111111 255
00001001 | RETURN 00011111 31

Notes: When the program is run, the code will jump to RAM location 6 (binary 00000110) to continue executing code. It will
also store the number 2 (binary O0000010) in the background since this is our return address for when a RETURN or RETLA
instruction is executed. The code will continue executing from RAM location 6 (binary O0000110) and will copy the contents
of the ButtonRegister to the DataLEDRegister). The code will then return to RAM location 2 (binary 00000010) to continue
executing instructions which in this case — will HALT the CPU.

Version 1.1 (02 August 2019) -47 -

Example : Jump to RAM location 6 (binary 00000110), continue executing code from there then return to continue
executing code as normal.

Machine Code | Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | CALL 00011101 29
00000001 6 00000110 6
00000010 | COPYAR 00000101 5
00000011 DataLEDRegister 11111111 255
00000100 | HALT 00000000 0
00000101 0
00000110 | RETLA 00011110 30
00000111 16 00010000 16

Notes: When the program is run, the code will jump to RAM location 6 (binary 00000110) to continue executing code. It will
also store the number 2 (binary O0000010) in the background since this is our return address for when a RETURN or RETLA
instruction is executed. The code will continue executing from RAM location 6 (binary O0000110) which in this case will
immediately return with the number 16 (binary 00010000) in the accumulator. The code will then continue from line 2
(binary 00000010) where the contents of the accumulator will be copied to the DataLEDRegister. The code will then finish
with the HALT instruction.

Version 1.1 (02 August 2019) -48 -

30. RETLA

Description: This instruction will return with an 8-bit number in the accumulator, to the next RAM location in sequence after
a call instruction is executed.

Usage: [RETLA] [Value to store in the accumulator]

Program Bytes Used: 2

Status Flags Affected: None

Example 1: See example 2 of the CALL instruction (instruction 29)
31. RETURN
Description: This instruction will return to the next RAM location in sequence after a call instruction is executed.
Usage: [RETURN]
Program Bytes Used: 1
Status Flags Affected: None

Example 1: See example 1 of the CALL instruction (instruction 29)

Version 1.1 (02 August 2019) -49 -

32. ADDRPC
Description: Add the contents of a RAM location to the program counter
Usage: [ADDRPC][RAM location which contains the number that will be added to the program counter]
Program Bytes Used: 2
Status Flags Affected: None

Example 1: Add the value stored within ‘myVariable’ to the program counter (‘myVariable’ is an alias for RAM location 240)

Pre-conditions: ‘myVariable’ =0 (binary 00000000)

Machine Code | Machine Code

PC Binary Instruction (Binary) (Decimal)
00010000 | ADDRPC 00100000 32
00010001 myVariable 11110000 240
00010010 | RETLA 00011110 30
00010011 120 01111000 120
00010100 | RETLA 00011110 30
00010101 201 11001001 201
00010110 | RETLA 00011110 30
00010111 234 11101010 234

Notes: This part of the program starts with the program counter at 00010000 which means a call would have been executed
previously to get here. When ADDRPC is executed, the program counter increments to 00010001 to get the register which
contains the number to add to the program counter. myVariable contains the number O (binary 00000000) which results in
nothing being added to the program counter, and the program counter will simply execute the next instruction in sequence as
normal. i.e. the next instruction will be program counter = 00010010.

See the POV Smiley Face program for an example of where ADDRPC is used.

Version 1.1 (02 August 2019) -50 -

Example : Add the value stored within ‘myVariable’ to the program counter (‘myVariable’ is an alias for RAM location 240)

Pre-conditions: ‘myVariable’ =4 (binary 00000100)

Machine Code | Machine Code
PC Binary Instruction (Binary) (Decimal)

00010000 | ADDRPC 00100000 32
00010001 myVariable 11110000 240
00010010 | RETLA 00011110 30
00010011 120 01111000 120
00010100 | RETLA 00011110 30
00010101 201 11001001 201
00010110 | RETLA 00011110 30
00010111 234 11101010 234

Notes: This part of the program starts with the program counter at 00010000 which means a call would have been executed
previously to get here. When ADDRPC is executed, the program counter increments to 00010001 to get the register which
contains the number to add to the program counter. myVariable contains the number 4 (binary 00000100) which results in
the program counter jumping ahead four spaces (to 00010101) and THEN executing the next instruction in sequence.
Therefore, after the ADDRPC instruction has been run, the next line to execute is 00010110.

Version 1.1 (02 August 2019) -51-

33. INITSP

Description: Initialises the internal stack pointer to point to the top of the internal stack. In other words - resets the internal
stack pointer to zero (decimal O) (binary 00000000).

Usage: [INITSP]

Program Bytes Used: 1

Status Flags Affected: None

Example 1: Initialise the stack pointer at the start of a program

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 INITSP 00100001 33

Notes: The stack pointer will now point to the top of the stack. In other words - the stack pointer will be reset to zero.

Version 1.1 (02 August 2019) -52-

34. RANDA

Description: Generates a random number between 1 - 255 (binary OO0O00001 -11111111) and places the number in the
accumulator.

Usage: [RANDA]

Program Bytes Used: 1

Status Flags Affected: None

Example 1: Generate a random number and store the result in memory location 4 (binary 00000100)

Pre-conditions: Memory location 4 (binary 00000100) = 0 (binary 00000000)
Accumulator = 0 (binary 00000000)

Machine Code Machine Code

PC Binary Instruction (Binary) (Decimal)
00000000 | RANDA 00100010 34
00000001 | COPYAR 00000101 5
00000010 4 00000100 4
00000011 | HALT 00000000 0

Post-conditions: Memory location 4 (binary O0O000100) = random number between 1 - 255 (binary 00000001 -
11111111)
Accumulator = random number between 1 - 255 (binary OO0O00001 -11111111)

Notes: Once the program has been run and halted, the memory location displayed will be memory location 4 (binary
00000100). The information displayed on the Data LED’s will be the random number that was just generated.

Version 1.1 (02 August 2019) -53 -

